Process Optimization on Micro-Aeration Supply for High Production Yield of 2,3-Butanediol from Maltodextrin by Metabolically-Engineered Klebsiella oxytoca
نویسندگان
چکیده
An optimization process with a cheap and abundant substrate is considered one of the factors affecting the price of the production of economical 2,3-Butanediol (2,3-BD). A combination of the conventional method and response surface methodology (RSM) was applied in this study. The optimized levels of pH, aeration rate, agitation speed, and substrate concentration (maltodextrin) were investigated to determine the cost-effectiveness of fermentative 2,3-BD production by metabolically-engineered Klebsiella oxytoca KMS005. Results revealed that pH, aeration rate, agitation speed, and maltodextrin concentration at levels of 6.0, 0.8 vvm, 400 rpm, and 150 g/L respectively were the optimal conditions. RSM also indicated that the agitation speed was the most influential parameter when either agitation and aeration interaction or agitation and substrate concentration interaction played important roles for 2,3-BD production by the strain from maltodextrin. Under interim fed-batch fermentation, 2,3-BD concentration, yield, and productivity were obtained at 88.1±0.2 g/L, 0.412±0.001 g/g, and 1.13±0.01 g/L/h respectively within 78 h.
منابع مشابه
High production of 2,3-butanediol from biodiesel-derived crude glycerol by metabolically engineered Klebsiella oxytoca M1
BACKGROUND 2,3-Butanediol (2,3-BDO) is a promising bio-based chemical because of its wide industrial applications. Previous studies on microbial production of 2,3-BDO has focused on sugar fermentation. Alternatively, biodiesel-derived crude glycerol can be used as a cheap resource for 2,3-BDO production; however, a considerable formation of 1,3-propanediol (1,3-PDO) and low concentration, produ...
متن کاملEnhanced 2,3-Butanediol Production by Optimizing Fermentation Conditions and Engineering Klebsiella oxytoca M1 through Overexpression of Acetoin Reductase
Microbial production of 2,3-butanediol (2,3-BDO) has been attracting increasing interest because of its high value and various industrial applications. In this study, high production of 2,3-BDO using a previously isolated bacterium Klebsiella oxytoca M1 was carried out by optimizing fermentation conditions and overexpressing acetoin reductase (AR). Supplying complex nitrogen sources and using N...
متن کاملProduction of (2R, 3R)-2,3-butanediol using engineered Pichia pastoris: strain construction, characterization and fermentation
Background 2,3-butanediol (2,3-BD) is a bulk platform chemical with various potential applications such as aviation fuel. 2,3-BD has three optical isomers: (2R, 3R)-, (2S, 3S)- and meso-2,3-BD. Optically pure 2,3-BD is a crucial precursor for the chiral synthesis and it can also be used as anti-freeze agent due to its low freezing point. 2,3-BD has been produced in both native and non-native ho...
متن کاملProduction of 2,3-butanediol from acid hydrolysates of Jatropha hulls with Klebsiella oxytoca.
Jatropha hulls were successfully for the first time used as raw materials for the production of 2,3-butanediol via dilute sulfuric acid hydrolysis and fermentation with Klebsiella oxytoca. Two-step hydrolysis was used to effectively hydrolyze the hulls at 150°C after pretreatment. In the first-step, hemicellulose was hydrolyzed under mild conditions (0.5h, 1.5% acid) to avoid secondary decompos...
متن کاملExtractive Capacity of Oleyl Alcohol on 2, 3-Butanediol Production in Fermentation Process with Use of Klebsiella pneumoniae PTCC 1290
Recovery of metabolites from fermentation broth by solvent extraction can be used to optimize fermentation processes. End-product reutilization, low product concentration and large volumes of fermentation broth and the requirements for large bioreactors, in addition to the high cost largely contributed to the decline in fermentative 2,3-butanediol production. Extraction can successfully be ...
متن کامل